Antibacterial activity of silver nanoparticles produced by Plantago ovata seed extract against antibiotic resistant Klebsiella pneumoniae – JBES

PlantagoMohammad Bokaeian, Taher Mohasseli, Saeide Saeidi, Nahid Sephri

Infectious Diseases and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Zahedan, Iran

Young Researcher Society. Department of Biotechnology, Faculty of Agricultural. Shahid Bahonar University of Kerman, Kerman, Iran

Department of Microbiology, Kerman Science and Research Branch, Islamic Azad University, Kerman, Iran

Key words: Silver nanoparticles, Plantago ovate, Antibacterial activity, Klebsiella pneumoniae

Abstract

The synthesis of nanoparticles has become the matter of great interest in recent years due to its various advantageous properties and applications in various fields. Though physical and chemical methods are more popular for nanoparticle synthesis, the biogenic production is a better option due to eco-friendliness. The purpose of this study is to synthesis of silver nanoparticles by using green method on extract from Plantago ovata and determine its potential antibacterial effects against antibiotic resistant Klebsiella pneumoniae isolates.A total of 30 K.pneumoniae strains were isolated from urine cultures of hospitalized patients suffering from urinary tract infections in three hospitals in Zahedan during the years 2011- 2012. Klebsiella pneumoniaeIsolated bacteria were identified by Gram’s stain and standard biochemical tests. The susceptibility of used antibiotics was carried out using standard disc diffusion method. The seeds of Plantago ovata were used for silver nanoparticle sunthesis. UV–vis spectral and Transmission Electron Microscopy analysis were used in order to confirm the formation of silver nanoparticles. The broth micro-dilution method was used to determine MIC of silver nanoparticles. The antibiotic resistance profile of K. pneumoniae isolates was as follow: Penicillin (93.3%), Erythromycin and Ampicillin (76.6%), Tetracycline and Cefixime (53.3%), Ceftazidime (40%) and Nalidixic acid (36.6%). The highest and the least MIC of P. ovate seed extract values were found to be 200 and 12.5 ppm respectively. The present study concludes that at a specific dose, chitosan-based AgNPs kill bacteria without harming the host cells, thus representing a potential template for the design of antibacterial agents to decrease bacterial colonization and to overcome the problem of drug resistance.

jbes-vol4no5-p125-1311Get the original articles in Source: Volume 4, Number 5, May 2014 – JBES

Journal Name: Journal of Biodiversity and Environmental Sciences (JBES)

Published By: International Network for Natural Sciences

Related Post: Woody plants diversity of two non protected tropical forests in Côte d’Ivoire (West Africa) – JBES

Download PDF

Leave a comment