Effects of chemical and biological fertilizer on yield and nitrogen uptake of rice

azolla-filiculoidesAzinNasrollahZadeh

Department of Agriculture, Lahijan branch, Islamic Azad University, Lahijan, Iran

Key words: Azolla, fertilizer, Nitrogen uptake, rice, yield.

Abstract

A factorial experiment was applied to evaluate the effect of chemical and biological fertilizer on nitrogen uptakes, nitrogen use efficiencies of grain yield and biomass (NUEg and NUEb respectively), yield and yield components of rice. Four biological treatments including:(M1:no fertilizer), ( M2:10 ton/ha cow dung ),(M3:20 ton/ha cow dung) and (M4:5 ton/ha azolla compost) and four chemical fertilizer treatments including: (S1: no fertilizer),(S2:40 kg N /ha),(S3:60 kg N /ha) and ( S4:80 kg N /ha ) were compared. dsc03984Results showed that highest rate of yield (3387 kg/ha), grain nitrogen uptake (45.1 kg/ha) and total nitrogen uptake (81.4 kg/ha) were reached the highest value at M4. Among the chemical fertilizers the highest grain yield (3373 kg/ha), straw nitrogen uptake (42.9 kg/ha) and total nitrogen uptake (87.7) belonged to highest nitrogen level (S4). Interaction effect of chemical × biological fertilizers didn’t show significant difference between all parameters except of yield and grain nitrogen uptake, as the most grain nitrogen uptake and grain yield were obtained in M4S4. So it can be concluded that using of biological fertilizers at appropriate rate and type, considering plant requirement, may improve grain yield, nitrogen uptake in rice.

Get the original article sin Source: Volume 4, Number 2, February 2014 – JBES

Published By: Journal of Biodiversity and Environmental Sciences (JBES)

Related Post: The impact of gas flaring and venting in Nigeria and management options: a case study of oil producing areas

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s