The aplication of mutation induction by gamma irradiation on cultivars yam (Dioscorea alata L.) from banggai islands, Indonesia

GAMMA_RAY

Aser Yalindua, Sudarsono, Asep Setiawan, H.M.H. Bintoro

Key words: Dioscorea alata L., LD50, mutation-vegeative (MV), gamma-ray.

Abstract:

This study aims to obtain mutant plants through induced mutations gamma rays. Materials research 20

accessions of yam from Banggai Islands, Indonesia, which were irradiated with doses of 0 Gy, 10 Gy, 20 Gy, and 30 Gy using a Gamma Chamber 4000 A. The results showed the effect of growing LD50 at 0 Gy (100%), 10 Gy (88.33% ), 20 Gy (86.67%), and 30 Gy (73.33%). Effect of irradiation dose of 20 Gy and 30 Gy causes accession BDa-05 and BDa-24 on the generation of MV1, MV2 and MV3, growing spread on the soil surface. Dose of 30 Gy irradiation led to the accession the round shape yam (BDa-30) into length the MV1, MV2 and MV3 generation. MV1 and MV2, shows the effect of irradiation dose of 30 Gy was significant different from 0 Gy and 10 Gy for duration of growth. Factors yam plant accessions and gamma radiation dose factors of significant influence on the length of growing crops, tuber number, stem diameter, length and weight of tubers. Exposure to gamma radiation doses higher tends to decrease the number of tubers, stem diameter, length and weight of tubers on MV1 generation. Exposure to irradiation 20 Gy and 30 Gy may cause growth patterns accession uwi some changes from pole climbing into climbing above the soil surface. Exposure to 30 Gy irradiation led to form the BDa-30 uwi accession changed (mutated) from the previous round shape becomes elongated.

Article Source: Volume 5, Number 2, August 2014 – IJAAR

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s